

MapReduce and Streaming Algorithms for Center-Based Clustering in Doubling Spaces

Geppino Pucci DEI, University of Padova, Italy

Based on joint works with:

M. Ceccarello, A. Mazzetto, and A. Pietracaprina

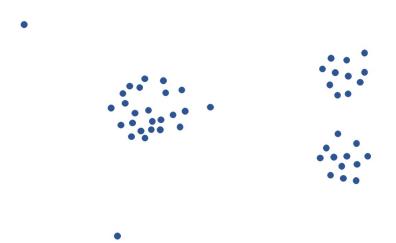
Center-based clustering in general metric spaces: Given a pointset *S* in a metric space with distance $d(\cdot, \cdot)$, determine a set $C^* \subseteq S$ of *k* centers minimizing:

- $\max_{p \in S} \{d(p, C^*)\}$ (k-center)
- $\sum_{p \in S} d(p, C^*)$ (k-median)
- $\sum_{p \in S} (d(p, C^*))^2$ (k-means)

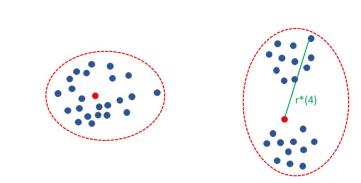
Remark: On general metric spaces it makes sense to require that $C^* \subseteq S$. This assumption is often relaxed in Euclidean spaces (continuos vs discrete version)

Variant: Center-based clustering with z outliers: Disregard the z largest distances when computing the objective function.

Example: pointset instance

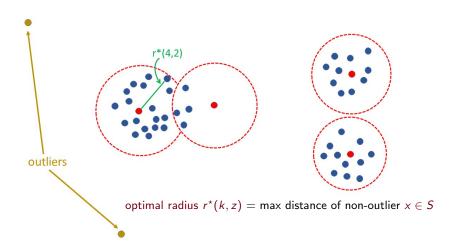


Example: solution to 4-center



optimal radius $r^{\star}(k) = \max$ distance of $x \in S$ from C^{\star}

Example: solution to 4-center with 2 outliers



- 1. Deal with very large pointsets
 - MapReduce distributed setting
 - Streaming setting
- 2. Aim: try to match best sequential approximation ratios with limited local/working space
- 3. Very simple algorithms with good practical performance
- 4. Concentrate on *k*-center with and without outliers [CeccarelloPietracaprinaP, VLDB2019].
- End of the talk: sketch very recent results for k-median and k-means [MazzettoPietracaprinaP, arXiv 2019]

Background

- MapReduce and Streaming models
- Previous work
- Doubling Dimension
- k center (with and without outliers):
 - Summary of results
 - Coreset selection: main idea
 - MapReduce algorithms
 - Porting to the Streaming setting
 - Experiments
- Sketch of new results for k-median and k-means

MapReduce

DI INGEGNERIA DELL'INFORMAZIONE

- Targets distributed cluster-based architectures
- Computation: sequence of rounds where data (key-value pairs) are mapped by key into subsets and processed in parallel by reducers equipped with small local memory
- Goals: few rounds, (substantially) sublinear local memory, linear aggregate memory.

Streaming

- Data provided as a continuous stream and processed using small working memory
- Multiple passes over data may be allowed
- ► Goals: 1 (or few) pass(es), (substantially) sublinear working memory

Sequential algorithms for general metric spaces:

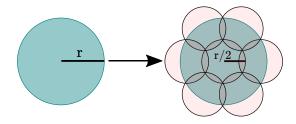
- ► k-center: 2-approximation (O (nk) time) and 2 e inapproximability [Gonzalez85]
- k-center with z outliers: 3-approximation (O (n²k log n) time) [Charikar+01]
- MapReduce algorithms:

Reference	Rounds	Approx.	Local Memory			
k-center problem						
[Ene+11] (w.h.p.)	$O\left(1/\epsilon ight)$	10	$O\left(k^2 S ^{\epsilon} ight)$			
[Malkomes+15]	2	4	$O\left((S k)^{1/2} ight)$			
k-center problem with z outliers						
[Malkomes+15]	2	13	$O\left((S (k+z))^{1/2} ight)$			

► Streaming algorithms:

Reference	Passes	Approx.	Working Memory		
k-center problem					
[McCutchen+08]	1	$2 + \epsilon$	$O\left(k\epsilon^{-1}\log\epsilon^{-1} ight)$		
<i>k</i> -center problem with <i>z</i> outliers					
[McCutchen+08]	1	$4 + \epsilon$	$O\left(kz\epsilon^{-1} ight)$		

Our algorithms are analyzed in terms of the doubling dimension D of the metric space: $\forall r$: any *ball* of radius r is covered by $\leq 2^{D}$ balls of radius r/2



- Euclidean spaces
- Shortest-path distances of mildly expanding topologies
- Low-dimensional pointsets of high-dimensional spaces

Our Algorithms

Model	Rnd/Pass	Approx.	Local/Working Memory		
k-center problem					
MapReduce	2	$2 + \epsilon$ (4)	$O\left(\sqrt{ S k} \left(\frac{4}{\epsilon}\right)^D\right) \left(O\left(\sqrt{ S k}\right)\right)$		
k-center problem with z outliers					
MapReduce	2	$3 + \epsilon$ (13)	$O\left(\sqrt{ S (k+z)} \left(\frac{24}{\epsilon}\right)^D\right) \left(O\left(\sqrt{ S (k+z)}\right)\right)$		
MapReduce	2	$3 + \epsilon$	$O\left(\left(\sqrt{ S (k+\log S)}+z\right)\left(\frac{24}{\epsilon}\right)^D\right)$		
(w.h.p.)					
Streaming	1	$3+\epsilon$ (4+ ϵ)	$(k+z) \left(\frac{96}{\epsilon}\right)^D \left(O\left(\frac{kz}{\epsilon}\right)\right)$		

- Substantial improvement in approximation quality at the expense of larger memory requirements (constant factor for constant ε, D)
- MR algorithms are oblivious to D
- Large constants due to the analysis. Experiments show practicality of our approach.

Main features

- Composable) coreset approach: select small T ⊆ S containing good solution for S and then run (adaptation of) best sequential approximation on T
- Flexibility: coreset construction can be either distributed (MapReduce) or streamlined (Streaming)
- Adaptivity: Memory/approximation tradeoffs expressed in terms of the doubling dimension *d* of the pointset
- Quality: MR and Streaming algorithms using small memory and *almost matching* best sequential approximations.

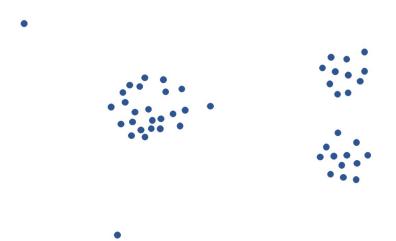
- Let r^{*} = max distance of any (non-outlier) x ∈ S from closest optimal center
- Select a coreset $T \subseteq S$ ensuring that

 $d(x,T) \leq \epsilon r^* \quad \forall x \in S - T$

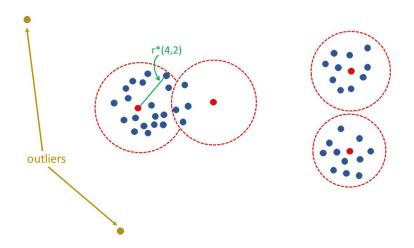
using sequential *h*-center approximation, for *h* suitably larger than *k*. (Similar idea in [CeccarelloPietracaprinaPUpfal17] for diversity maximization \rightarrow next talk)

Obs: in general, T must contain outliers

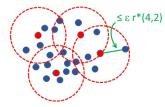
Example: pointset instance

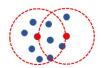


Example: optimal solution k=4, z=2



Example: 10-point coreset T (red points)





Basic primitive for coreset selection (based on [Gonzalez85])

```
Select(S', h, \epsilon):

Input: Subset S' \subseteq S, parameters h, \epsilon > 0

Output: Coreset T \subseteq S' of size \geq h

T \leftarrow arbitrary point c_1 \in S'

r(1) \leftarrow max distance of any x \in S' from T

for i = 2, 3, ... do

Find farthest point c_i \in S' from T, and add it to T

r(i) \leftarrow max distance of any x \in S' from T

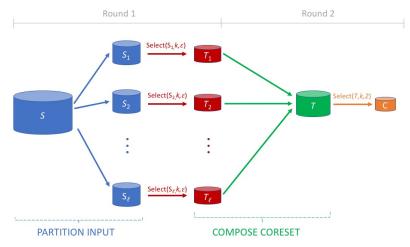
if ((i \geq h) \text{ AND } (r(i) \leq (\epsilon/2)r(h))) then return T
```

Lemma: Let $r^*(h)$ be the optimal *h*-center radius for the *entire set S* and let *last* the index of the last iteration of Select. Then:

```
r(last) \leq \epsilon r^*(h)
```

Proof idea: by a simple adaptation of Gonzalez's proof, $r(i = h) \le 2r^*(h)$

MapReduce algorithms: *k*-center



Analysis

• Approximation quality: let $C = \{c_1, \ldots, c_k\}$ be the returned centers.

For any $x \in S_j$ (arbitrary j)

$$\begin{array}{rcl} d(x,C) &\leq & d(x,t) + d(t,C) & (t \in T_j \text{ closest to } x) \\ &\leq & \epsilon r^\star(k) + 2r^\star(k) = (2+\epsilon)r^\star(k) \end{array}$$

- Memory requirements: assume doubling dimension D
 - ▶ set $\ell = \sqrt{|S|/k}$ ▶ Technical lemma: $|T_j| \le k(4/\epsilon)^D$, for every $1 \le j \le \ell$ ⇒ Local memory = $O\left(\sqrt{|S|k}(4/\epsilon)^D\right)$.

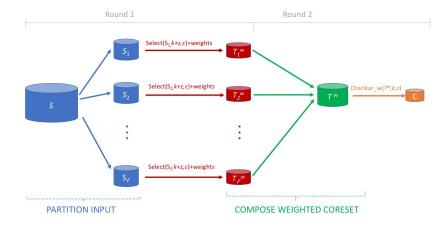
Remarks:

- For constant ε and D: (2 + ε)-approximation with the same memory requirements as the 4-approximation in [Malkomes+15]
- Our algorithm is oblivious to D

Similar approach to the case without outliers but with some important differences

- 1. Each coreset $T_j \subseteq S_j$ must contain $\geq k + z$ points (making room for outliers)
- 2. Each $t \in T_j$ has a weight w(t) = number of points of $S_j T_j$ for which t is proxy (i.e., closest). Let T_j^w denote the set T_j with weights.
- 3. On $T^w = \bigcup_j T_j^w$ a suitable weighted variant of the algorithm in [Charikar01+] (dubbed Charikar_w) is run which:
 - determines k suitable centers (final solution) covering most points of T^w
 - uncovered points of T^w have aggregate weight z and are the proxies of the outliers

DIPARTIMENTO MapReduce algorithms: k-center with z outliers (cont'd) DIPARTIMENTO MapReduce algorithms: k-center with z outliers (cont'd)



DIPARTIMENTO MapReduce algorithms: k-center with z outliers (cont'd) DI INGEGNERIA DI INGEGNERIA

Analysis

• Approximation quality: let $C = \{c_1, \ldots, c_k\}$ be the returned centers.

For any *non-outlier* $x \in S_j$ (arbitrary j) with proxy $t \in T_j^w$

 $d(x,t) \leq \epsilon r^{\star}(k,z)$ and $d(t,C) \leq (3+5\epsilon)r^{\star}(k,z)$

 $\implies (3+\epsilon')\text{-approximation for every }\epsilon'>0.$

Memory requirements: assume doubling dimension D

- set $\ell = \sqrt{|S|/(k+z)}$
- Technical lemma: $|T_j| \leq (k+z)(4/\epsilon)^D$, for every $1 \leq j \leq \ell$

 $\implies \text{Local memory} = O\left(\sqrt{|S|(k+z)}(4/\epsilon)^D\right).$

Remarks:

- For constant *ϵ* and *D*: (3 + *ϵ*)-approximation with the same memory requirements as the 13-approximation in [Malkomes+15]
- Our algorithm is oblivious to D

DIPARTIMENTO MapReduce algorithms: k-center with z outliers (cont'd) DIPARTIMENTO MapReduce algorithms: k-center with z outliers (cont'd)

Randomized Variant

• Create S_1, S_2, \ldots, S_ℓ as a random partition

 $(\Rightarrow z' = O(z/\ell + \log |S|)$ outliers per partition w.h.p.)

Execute the deterministic algorithm with z' in lieu of z

Analysis

- Approximation quality: $(3 + \epsilon')$ (as before)
- Memory requirements: $O\left(\left(\sqrt{|S|(k+\log|S|)}+z\right)(24/\epsilon)^D\right)$

Remark:

For constant ϵ and D: $O\left(\sqrt{|S|(k + \log |S|)} + z\right)$ local memory (linear dependence on z desirable)

Main idea: single-pass simulation of MR-algorithm with no data partition $(\ell=1)$

Algorithm:

• Obtain coreset T^w by running a weighted variant of the doubling algorithm of [Charikar+04] for τ -center (without outliers), with $\tau = (k + z)(96/\epsilon)^D$ on the input stream.

Remark: *D* must be known! (obliviousness with 1 extra pass)

▶ Run Charikar_w in working memory on T^w to obtain final solution.

Analysis: reasoning as for the MR-algorithm we can prove

- $(3 + \epsilon')$ -approximation for every $\epsilon' > 0$.
- Working memory = $O\left((k+z)(96/\epsilon)^D\right)$

Experiments

Goals of the experiments:

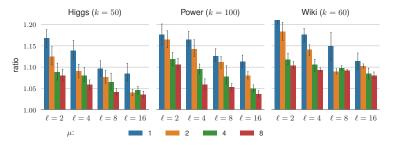
- 1. Assess quality of solution as a function of the coreset size
- 2. Assess scalability of the MR-algorithms

Datasets:

- Higgs: $\simeq 11$ M points (in \Re^7) from high-energy physics experiments
- Power: $\simeq 2M$ points (in \Re^7) from electric power consumption measurements
- Wiki: $\simeq 5M$ pages ($\stackrel{\text{word2vec}}{\rightarrow}$ vectors in \Re^{50})
- ▶ Inflated instances of Higgs/Power/Wiki: up to 100 times larger (for scalability)

Platform: Cluster with

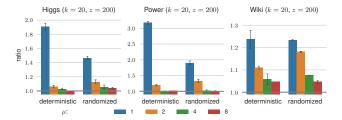
- 16 4-core I7 processor with 18GB RAM
- 10Gb Ethernet



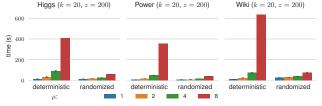
Approx. ratio vs. coreset size $\mu \cdot k$, with $\mu = 1, 2, 4, 8$ and $\ell = 2, 4, 8, 16$

Remark: Approximation ratio measured against best solution ever computed for the specific instance (max parallelism, max memory)

$\supseteq \text{ DiPartIME} \bigcirc \\ \square \text{ DiPartIME} \bigcirc \\ \square \text{ DIPARTIME} \bigcirc \\ \square \text{ DI INGEGNERIA} \\ \square \text{ DELL'INFORMAZIONE}$

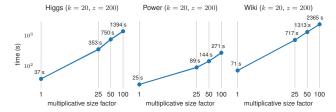


Approx. ratio vs. coreset size $\mu \cdot k$, with $\mu = 1, 2, 4, 8$, $\ell = 16$ (det/rand)

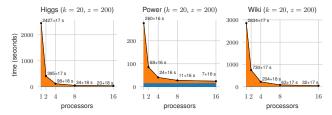


Running times (same parameters)

Scalability: k-center with outliers

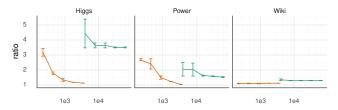


Running time vs input size (randomized, fixed parallelism $\ell = 16$)

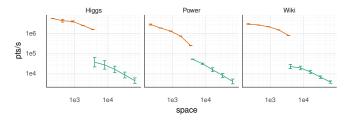


Running time vs # processors (randomized, fixed final coreset size) Orange area: coreset construction. Blue area: seq. solution on coreset

Streaming performance: *k*-center with outliers



Accuracy vs working space: Ours (orange) vs [McCutchen+08] (green)



Throughput (pts/s) vs working space

- Composable coreset constructions for both problems for general metric spaces (centers belong to S)
- ▶ Results: 2-round MapReduce algorithms for both problems:
 - Approximation ratio: α + ε, α best sequential approximation for the problem, ε ∈ (0, 1)
 - Local space: $\tilde{O}\left(\sqrt{|S|k}(c/\epsilon)^{2D}\right)$. Sublinear for d = O(1).
- First distributed algorithms for general spaces to achieve (almost) sequential accuracy
- Main Idea: Obtain each local coreset T_i as the centers of a ball decomposition of S_i aimed at refining initial (bicriteria) constant approximation for S_i (inspired by exponential grids of [Har-Peled+04-05] for R^d).
- Simple, deterministic construction
- Check arxiv.org/abs/1904.12728 for more

- (Composable) coreset constructions for k-center (w/o and with z outliers), k-median, k-means
- Coresets enable a spectrum of space/quality tradeoffs
- Approximation guarantees for MR and Streaming can get arbitrarily close to best sequential ones
- Experimental evidence of practicality of approach (*k*-center)

Future Work

- Smaller coresets (non uniform sampling?)
- Streaming algorithms and experiments for k-median and k-means