
MapReduce and Streaming Algorithms for
Center-Based Clustering in Doubling Spaces

Geppino Pucci

DEI, University of Padova, Italy

Based on joint works with:

M. Ceccarello, A. Mazzetto, and A. Pietracaprina

1

Center-based clustering

Center-based clustering in general metric spaces: Given a pointset S
in a metric space with distance d(·, ·), determine a set C? ⊆ S of k
centers minimizing:

I maxp∈S {d(p,C?)} (k-center)

I
∑

p∈S d(p,C?) (k-median)

I
∑

p∈S (d(p,C?))2 (k-means)

Remark: On general metric spaces it makes sense to require that
C? ⊆ S . This assumption is often relaxed in Euclidean spaces
(continuos vs discrete version)
Variant: Center-based clustering with z outliers: Disregard the z largest
distances when computing the objective function.

2

Example: pointset instance

3

Example: solution to 4-center

optimal radius r?(k) = max distance of x ∈ S from C?

4

Example: solution to 4-center with 2 outliers

optimal radius r?(k, z) = max distance of non-outlier x ∈ S

5

Center-based clustering for big data

1. Deal with very large pointsets

I MapReduce distributed setting

I Streaming setting

2. Aim: try to match best sequential approximation ratios with
limited local/working space

3. Very simple algorithms with good practical performance

4. Concentrate on k-center with and without outliers
[CeccarelloPietracaprinaP, VLDB2019].

5. End of the talk: sketch very recent results for k-median and
k-means [MazzettoPietracaprinaP, arXiv 2019]

6

Outline

I Background

I MapReduce and Streaming models

I Previous work

I Doubling Dimension

I k center (with and without outliers):

I Summary of results

I Coreset selection: main idea

I MapReduce algorithms

I Porting to the Streaming setting

I Experiments

I Sketch of new results for k-median and k-means

7

Background: MapReduce and Streaming models

MapReduce

I Targets distributed cluster-based architectures

I Computation: sequence of rounds where data (key-value pairs) are
mapped by key into subsets and processed in parallel by reducers
equipped with small local memory

I Goals: few rounds, (substantially) sublinear local memory, linear
aggregate memory.

Streaming

I Data provided as a continuous stream and processed using small
working memory

I Multiple passes over data may be allowed

I Goals: 1 (or few) pass(es), (substantially) sublinear working memory

8

Background: Previous work

I Sequential algorithms for general metric spaces:

I k-center: 2-approximation (O (nk) time) and 2− ε
inapproximability [Gonzalez85]

I k-center with z outliers: 3-approximation (O
(
n2k log n

)
time)

[Charikar+01]

I MapReduce algorithms:

Reference Rounds Approx. Local Memory

k-center problem
[Ene+11] (w.h.p.) O (1/ε) 10 O

(
k2|S |ε

)
[Malkomes+15] 2 4 O

(
(|S |k)1/2

)
k-center problem with z outliers

[Malkomes+15] 2 13 O
(

(|S |(k + z))1/2
)

9

Background: Previous work (cont’d)

I Streaming algorithms:

Reference Passes Approx. Working Memory

k-center problem
[McCutchen+08] 1 2 + ε O

(
kε−1 log ε−1

)
k-center problem with z outliers

[McCutchen+08] 1 4 + ε O
(
kzε−1

)

10

Background: doubling dimension

Our algorithms are analyzed in terms of the doubling dimension D
of the metric space: ∀r : any ball of radius r is covered by ≤ 2D

balls of radius r/2

r r/2

I Euclidean spaces

I Shortest-path distances of mildly expanding topologies

I Low-dimensional pointsets of high-dimensional spaces

11

Summary of results

Our Algorithms

Model Rnd/Pass Approx. Local/Working Memory

k-center problem

MapReduce 2 2 + ε (4) O
(√
|S|k (4

ε
)D
) (

O
(√
|S|k

))
k-center problem with z outliers

MapReduce 2 3 + ε (13) O
(√
|S|(k + z) (24

ε
)D
) (

O
(√
|S|(k + z)

))
MapReduce

2 3 + ε O
((√

|S |(k + log |S|) + z
)

(24
ε

)D
)

(w.h.p.)

Streaming 1 3 + ε (4 + ε) (k + z) (96
ε

)D
(
O
(

kz
ε

))
I Substantial improvement in approximation quality at the expense of larger

memory requirements (constant factor for constant ε,D)

I MR algorithms are oblivious to D

I Large constants due to the analysis. Experiments show practicality of our
approach.

12

Summary of results (cont’d)

Main features

I (Composable) coreset approach: select small T ⊆ S
containing good solution for S and then run (adaptation of)
best sequential approximation on T

I Flexibility: coreset construction can be either distributed
(MapReduce) or streamlined (Streaming)

I Adaptivity: Memory/approximation tradeoffs expressed in
terms of the doubling dimension d of the pointset

I Quality: MR and Streaming algorithms using small memory
and almost matching best sequential approximations.

13

Coreset selection: main idea

I Let r? = max distance of any (non-outlier) x ∈ S from closest
optimal center

I Select a coreset T ⊆ S ensuring that

d(x ,T) ≤ εr? ∀x ∈ S − T

using sequential h-center approximation, for h suitably larger than
k. (Similar idea in [CeccarelloPietracaprinaPUpfal17] for diversity
maximization → next talk)

I Obs: in general, T must contain outliers

14

Example: pointset instance

15

Example: optimal solution k=4, z=2

16

Example: 10-point coreset T (red points)

17

MapReduce algorithms

Basic primitive for coreset selection (based on [Gonzalez85])

Select(S ′, h, ε):

Input: Subset S ′ ⊆ S , parameters h, ε > 0
Output: Coreset T ⊆ S ′ of size ≥ h

T ← arbitrary point c1 ∈ S ′

r(1)← max distance of any x ∈ S ′ from T
for i = 2, 3, . . . do

Find farthest point ci ∈ S ′ from T , and add it to T
r(i)← max distance of any x ∈ S ′ from T
if ((i ≥ h) AND (r(i) ≤ (ε/2)r(h))) then return T

Lemma: Let r∗(h) be the optimal h-center radius for the entire set S and let
last the index of the last iteration of Select. Then:

r(last) ≤ εr∗(h)

Proof idea: by a simple adaptation of Gonzalez’s proof, r(i = h) ≤ 2r∗(h)

18

MapReduce algorithms: k-center

19

MapReduce algorithms: k-center (cont’d)

Analysis

I Approximation quality: let C = {c1, . . . , ck} be the returned centers.

For any x ∈ Sj (arbitrary j)

d(x ,C) ≤ d(x , t) + d(t,C) (t ∈ Tj closest to x)

≤ εr?(k) + 2r?(k) = (2 + ε)r?(k)

I Memory requirements: assume doubling dimension D

I set ` =
√
|S|/k

I Technical lemma: |Tj | ≤ k(4/ε)D , for every 1 ≤ j ≤ `

⇒ Local memory = O
(√
|S|k(4/ε)D

)
.

Remarks:

I For constant ε and D: (2 + ε)-approximation with the same memory
requirements as the 4-approximation in [Malkomes+15]

I Our algorithm is oblivious to D
20

MapReduce algorithms: k-center with z outliers

Similar approach to the case without outliers but with some important differences

1. Each coreset Tj ⊆ Sj must contain ≥ k + z points (making room for outliers)

2. Each t ∈ Tj has a weight w(t) = number of points of Sj − Tj for which t is
proxy (i.e., closest). Let Tw

j denote the set Tj with weights.

3. On Tw =
⋃

j T
w
j a suitable weighted variant of the algorithm in [Charikar01+]

(dubbed Charikar w) is run which:

I determines k suitable centers (final solution) covering most points of Tw

I uncovered points of Tw have aggregate weight z and are the proxies of
the outliers

21

MapReduce algorithms: k-center with z outliers (cont’d)

22

MapReduce algorithms: k-center with z outliers (cont’d)

Analysis

I Approximation quality: let C = {c1, . . . , ck} be the returned centers.

For any non-outlier x ∈ Sj (arbitrary j) with proxy t ∈ Tw
j

d(x , t) ≤ εr?(k, z) and d(t,C) ≤ (3 + 5ε)r?(k, z)

⇒ (3 + ε′)-approximation for every ε′ > 0.

I Memory requirements: assume doubling dimension D

I set ` =
√
|S|/(k + z)

I Technical lemma: |Tj | ≤ (k + z)(4/ε)D , for every 1 ≤ j ≤ `

⇒ Local memory = O
(√
|S|(k + z)(4/ε)D

)
.

Remarks:

I For constant ε and D: (3 + ε)-approximation with the same memory
requirements as the 13-approximation in [Malkomes+15]

I Our algorithm is oblivious to D

23

MapReduce algorithms: k-center with z outliers (cont’d)

Randomized Variant

I Create S1,S2, . . . , S` as a random partition

(⇒ z ′ = O(z/`+ log |S |) outliers per partition w.h.p.)

I Execute the deterministic algorithm with z ′ in lieu of z

Analysis

I Approximation quality: (3 + ε′) (as before)

I Memory requirements: O
((√

|S|(k + log |S |) + z
)

(24/ε)D
)

Remark:

I For constant ε and D: O
(√
|S |(k + log |S|) + z

)
local memory

(linear dependence on z desirable)

24

Streaming algorithm: k-center with z outliers

Main idea: single-pass simulation of MR-algorithm with no data partition
(` = 1)

Algorithm:

I Obtain coreset Tw by running a weighted variant of the doubling
algorithm of [Charikar+04] for τ -center (without outliers), with
τ = (k + z)(96/ε)D on the input stream.

Remark: D must be known! (obliviousness with 1 extra pass)

I Run Charikar w in working memory on Tw to obtain final solution.

Analysis: reasoning as for the MR-algorithm we can prove

I (3 + ε′)-approximation for every ε′ > 0.

I Working memory = O
(
(k + z)(96/ε)D

)

25

Experiments

Goals of the experiments:

1. Assess quality of solution as a function of the coreset size

2. Assess scalability of the MR-algorithms

Datasets:

I Higgs: ' 11M points (in <7) from high-energy physics experiments

I Power: ' 2M points (in <7) from electric power consumption measurements

I Wiki: ' 5M pages (
word2vec→ vectors in <50)

I Inflated instances of Higgs/Power/Wiki: up to 100 times larger (for scalability)

Platform: Cluster with
I 16 4-core I7 processor with 18GB RAM

I 10Gb Ethernet

26

Accuracy vs coreset size/parallelism: k-center

` = 2 ` = 4 ` = 8 ` = 16
1.00

1.05

1.10

1.15

1.20

ra
tio

Higgs (k = 50)

` = 2 ` = 4 ` = 8 ` = 16

Power (k = 100)

` = 2 ` = 4 ` = 8 ` = 16

µ:

Wiki (k = 60)

1 2 4 8

Approx. ratio vs. coreset size µ · k , with µ = 1, 2, 4, 8 and ` = 2, 4, 8, 16

Remark: Approximation ratio measured against best solution ever

computed for the specific instance (max parallelism, max memory)

27

Accuracy vs coreset size/parallelism: k-center with outliers

deterministic randomized

1.0

1.2

1.4

1.6

1.8

2.0
ra

tio

Higgs (k = 20, z = 200)

deterministic randomized
1.0

1.5

2.0

2.5

3.0

Power (k = 20, z = 200)

deterministic randomized
1.0

1.1

1.2

1.3

µ:

Wiki (k = 20, z = 200)

1 2 4 8

Approx. ratio vs. coreset size µ · k , with µ = 1, 2, 4, 8 , ` = 16 (det/rand)

deterministic randomized
0

200

400

600

tim
e

(s
)

Higgs (k = 20, z = 200)

deterministic randomized

Power (k = 20, z = 200)

deterministic randomized
µ:

Wiki (k = 20, z = 200)

1 2 4 8

Running times (same parameters)

28

Scalability: k-center with outliers

1 25 50 100
multiplicative size factor

102

103

tim
e

(s
)

37 s

353 s

750 s
1394 s

Higgs (k = 20, z = 200)

1 25 50 100
multiplicative size factor

25 s

89 s
144 s

271 s

Power (k = 20, z = 200)

1 25 50 100
multiplicative size factor

71 s

717 s
1313 s

2365 s

Wiki (k = 20, z = 200)

Running time vs input size (randomized, fixed parallelism ` = 16)

1 2 4 8 16

processors

0

1000

2000

tim
e

(s
ec

on
ds

)

2427+17 s

395+17 s

98+18 s 34+18 s 20+18 s

Higgs (k = 20, z = 200)

1 2 4 8 16

processors

0

100

200

260+16 s

68+16 s

24+16 s
11+16 s 7+16 s

Power (k = 20, z = 200)

1 2 4 8 16

processors

0

1000

2000

3000 2834+17 s

730+17 s

204+18 s
63+17 s 32+17 s

Wiki (k = 20, z = 200)

Running time vs # processors (randomized, fixed final coreset size)

Orange area: coreset construction. Blue area: seq. solution on coreset 29

Streaming performance: k-center with outliers

1e3 1e4

1

2

3

4

5
ra

tio
Higgs

1e3 1e4

Power

1e3 1e4

Wiki

Accuracy vs working space: Ours (orange) vs [McCutchen+08] (green)

1e3 1e4

1e4

1e5

1e6

pt
s/

s

Higgs

1e3 1e4

Power

1e3 1e4

space

Wiki

Throughput (pts/s) vs working space
30

Recent developments for k-median and k-means

I Composable coreset constructions for both problems for general
metric spaces (centers belong to S)

I Results: 2-round MapReduce algorithms for both problems:

I Approximation ratio: α + ε, α best sequential approximation
for the problem, ε ∈ (0, 1)

I Local space: Õ
(√
|S |k(c/ε)2D

)
. Sublinear for d = O(1).

I First distributed algorithms for general spaces to achieve (almost)
sequential accuracy

I Main Idea: Obtain each local coreset Ti as the centers of a ball
decomposition of Si aimed at refining initial (bicriteria) constant
approximation for Si
(inspired by exponential grids of [Har-Peled+04-05] for <d).

I Simple, deterministic construction

I Check arxiv.org/abs/1904.12728 for more

31

Conclusions

I (Composable) coreset constructions for k-center (w/o and
with z outliers), k-median, k-means

I Coresets enable a spectrum of space/quality tradeoffs

I Approximation guarantees for MR and Streaming can get
arbitrarily close to best sequential ones

I Experimental evidence of practicality of approach (k-center)

Future Work

I Smaller coresets (non uniform sampling?)

I Streaming algorithms and experiments for k-median and
k-means

32

